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Dynamics of absorption of a randomly accelerated particle
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Abstract. Consider a randomly accelerated particle moving on the half-line x > 0 with a
boundary condition at x = 0 that respects the scale invariance of the equations of motion under
x → λ3x, v → λv, t → λ2t . If the boundary condition leads to absorption of the particle
at x = 0 and if the probability Q(x, v; t) that the particle has not yet been absorbed at time t

decays, for long times, as a power law with exponent φ, then the power law must have the specific

form Q(x, v; t) ≈ Cx2φ/3U(− 2
3 φ, 2

3 , v3

9x
)t−φ . This is a consequence of scale invariance and

the Fokker–Planck equation. Here C is a constant, and U(a, b, z) is a confluent hypergeometric
function. The persistence exponents φ for several boundary conditions of physical interest follow
directly from this result.

Consider a particle moving on the half-line x > 0 according to the Langevin equation

d2x

dt2
= η(t). (1)

The acceleration η(t) has the form of Gaussian white noise, with

〈η(t)〉 = 0 〈η(t1)η(t2)〉 = 2δ(t1 − t2). (2)

Several boundary conditions leading to absorption of the particle at x = 0 are described below.
We will be primarily interested in the survival probability Q(x, v; t), i.e. the probability that
after a time t a particle with initial position x and initial velocity v has still not been absorbed
at the boundary. The evolution of Q(x, v; t) is determined by the Fokker–Planck equation [1](

∂

∂t
− v

∂

∂x
− ∂2

∂v2

)
Q(x, v; t) = 0 (3)

which follows from (1) and (2), with the initial condition

Q(x, v; 0) = 1. (4)

Suppose the particle is absorbed as soon as it reaches x = 0. This corresponds to the
boundary condition

Q(0, v; t) = 0 v < 0 absorption at first passage. (5)

The long-time behaviour, studied in [2–5], is given by

Q(x, v; t) ≈ 34/3(2π)−1/2�(3/4)−1x1/6U

(
−1

6
,

2

3
,

v3

9x

)
t−1/4. (6)
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Here U(a, b, z) is a confluent hypergeometric function in the notation of [6]. Evaluating
Q(x, v, t) in the limit x → 0 using the asymptotic forms [5, 6]

U

(
−1

6
,

2

3
, y3

)
≈

{
y1/2

[
1 + O(y−3)

]
constant × (−y)−5/2 exp(y3)

y → ∞
y → −∞ (7)

we see that the boundary condition (5) is indeed satisfied and that

Q(0, v; t) ≈ 3(2π)−1/2�(3/4)−1

(
v2

t

)1/4

v > 0. (8)

Following Majumdar and Bray [7] and Cornell et al [8], we also consider ‘partial-survival’
and ‘inelastic’ boundary conditions, respectively. For these boundary conditions the survival
probability also decays as a power law of the form

Q(x, v; t) ≈ A(x, v)t−φ (9)

for long times.
One can imagine physical systems in which the absorption of the particle, once it arrives

at x = 0, is statistical, due, for example, to a quantum capture processor or to randomness
of the absorption sites. In the partial-survival model [7], the randomly accelerated particle
is reflected with probability p and absorbed with probability 1 − p each time it reaches the
origin. Thus Q(x, v; t) satisfies the boundary condition

Q(0, −v; t) = pQ(0, v; t) v > 0 partial-survival. (10)

Burkhardt [10] and De Smedt et al [11] recently obtained the exact result

φ(p) = 1

4

(
1 − 6

π
sin−1 p

2

)
(11)

for the persistence exponent. Equation (11) is consistent with the expected results φ(0) = 1
4

for absorption at first passage and φ(1) = 0 for elastic reflection with probability 1.
In a gas of driven granular matter the particles lose kinetic energy in inelastic collisions and

tend to cluster. Under certain circumstances particles may undergo ‘inelastic collapse’, sticking
together due to repeated inelastic collisions, even though no attractive force is present [9].
Cornell et al [8] have studied the inelastic collapse of a randomly accelerated particle on the
half-line making inelastic collisions with the boundary. In their model the velocities vi and
vf just before and after boundary collisions are related by vf = −rvi, with coefficient of
restitution r < 1. Thus the survival probability satisfies

Q(0, −v; t) = Q(0, rv; t) v > 0 inelastic. (12)

Cornell et al argue that there is a transition at the critical value

rc = e−π/
√

3 = 0.163 . . . . (13)

For r < rc the collisions are so inelastic that the particle is eventually localized, i.e. absorbed
at the boundary. Swift and Bray [12] conjectured that the persistence exponent θ(r) for the
inelastic model is the same as in the partial-survival model with p = r2θ . The exact result

r =
{

2 sin
[π

6
(1 − 4θ)

]}1/2θ

(14)

derived in [10,11] confirms this. This formula is consistent with the expected results θ(0) = 1
4

for absorption at first passage and θ(rc) = 0 at the threshold of absorption.
Since publication of [5] I have been asked many times if the result φ = 1

4 for absorption at
first passage has a simple explanation. A much simpler derivation than in the rather technical
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papers [3–5] is provided here. For other scale-invariant boundary conditions, including the
partial-survival and inelastic cases, the derivation of the persistence exponent is equally simple.

The Fokker–Planck equation (3), the initial condition (4), and the three boundary
conditions (5), (10) and (12) are all invariant under the scale transformation x → λ3x, v → λv,
t → λ2t for arbitrary positive λ. For any scale-invariant boundary condition, the survival
probability

Q(x, v; t) = Q(λ3x, λv, λ2t) = Q(v3x−1, x2/3t−1) (15)

is a function of only two independent variables.
For consistency with the t−φ decay, as in (9), Q(x, v; t) in (15) must have the asymptotic

form

Q(x, v; t) ≈ x2φ/3G(v3x−1)t−φ (16)

for large t . Inserting (16) in the Fokker–Planck equation (3), one finds that the function G(z)

in (16) satisfies Kummer’s differential equation [6]

zG′′(z) +

(
2

3
− z

9

)
G′(z) +

2φ

27
G(z) = 0. (17)

The general solution is a linear combination of the confluent hypergeometric functions
M(− 2

3 φ, 2
3 , z) and U(− 2

3 φ, 2
3 , z), but only the latter is finite in the limit z → ∞. Thus,

Q(x, v; t) ≈ Cx2φ/3U

(
−2

3
φ,

2

3
,

v3

9x

)
t−φ. (18)

An analogous result has been obtained previously in the context of semiflexible polymers
[13, 14], where the same Fokker–Planck equation plays a central role. The amplitude C in
equation (18) depends on the particular boundary condition but not on x and v. For the
partial-survival model the exact C(p) has recently been been calculated [11, 15]. Equation
(18) generalizes the result (6) for absorption at first passage to any scale-invariant boundary
condition.

Taking the limit x → 0 in equation (18) and making use of asymptotic properties of the
confluent hypergeometric function [6], we obtain

Q(0, −v; t) ≈ 2 sin
[π

6
(1 − 4φ)

]
C̃

(
v2

t

)φ

v > 0 (19)

Q(0, v; t) ≈ C̃

(
v2

t

)φ

v > 0 (20)

where C̃ = 3−4φ/3C. If the survival probability decays as t−φ and the boundary condition is
scale invariant, then the value of φ follows directly from equations (19) and (20).

Comparing (19) and (20) with the boundary condition (5) for absorption at first passage,
one sees that sin

[
π
6 (1 − 4φ)

] = 0, which implies the known exact result φ = 1
4 in (6).

Comparing (19) and (20) with the boundary condition (10) for the partial-survival model,
one sees that 2 sin

[
π
6 (1 − 4φ)

] = p. Solving for φ, we obtain the known exact result (11).
Comparing (19) and (20) with the boundary condition (12) for the inelastic model and

denoting the persistence exponent by θ instead of φ, we see that 2 sin
[

π
6 (1 − 4θ)

] = r2θ ,
which is the same as the exact result (14).

If the boundary condition is scale invariant but inconsistent with the very restrictive form
(19), (20), a solution of the Fokker–Planck equation that decays as t−φ can be ruled out.
Are there any other scale-invariant boundary conditions besides the three we have already
considered which are compatible with (19), (20)? One additional example is the generalization



L432 Letter to the Editor

mentioned in [10]. The randomly accelerated particle is reflected with coefficient of restitution
ri with probability pi , where i = 1, 2, . . . , n. This corresponds to

Q(0, −v; t) =
n∑

i=1

piQ(0, riv; t) v > 0. (21)

Comparing equations (19), (20) with the boundary condition (21), one sees that the persistence
exponent is the same as in the partial survival model with

2 sin
[π

6
(1 − 4φ)

]
= p =

n∑
i=1

pir
2φ

i . (22)

An example of a boundary condition which is not invariant under v → λv is

Q(0, −v; t) = θ(v∗ − v)Q(0, v; t) v > 0. (23)

This corresponds to elastic reflection if the particle strikes the boundary with speed less
than v∗ and absorption if the incident speed exceeds v∗. Clearly this boundary condition
is incompatible with equations (19) and (20). If the boundary condition is not scale invariant,
Q(x, v; t) depends, in general, on three independent variables x, v, t instead of two scale-
invariant combinations, as in (15), and our main results (19)–(21) no longer apply.
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and the Institut für Festkörperforschung, Jülich, Ecole Normale Supérieure, Paris, and Institut
Laue-Langevin, Grenoble for hospitality. This work was also supported by the Alexander von
Humboldt Stiftung and Temple University.

References

[1] Risken H 1989 The Fokker–Planck Equation: Method of Solution and Applications (Berlin: Springer)
[2] McKean H P 1963 J. Math. Kyoto Univ. 2 227
[3] Goldman M 1971 Ann. Math. Stat. 42 2150
[4] Sinai Y G 1992 Theor. Math. Phys. 90 219 (1992 Teor. Mat. Fiz. 90 323)
[5] Burkhardt T W 1993 J. Phys. A: Math. Gen. 26 L1157
[6] Abramowitz M and Stegun I A 1965 Handbook of Mathematical Functions (New York: Dover)
[7] Majumdar S N and Bray A J 1998 Phys. Rev. Lett. 81, 2626
[8] Cornell S J, Swift M R and Bray A J 1998 Phys. Rev. Lett. 81 1142
[9] Jaeger H M, Nagel S R and Behringer R P 1996 Rev. Mod. Phys. 68 1259

[10] Burkhardt T W 2000 Phys. Rev. E at press
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